Get fresh updates from Hortonworks by email

Once a month, receive latest insights, trends, analytics information and knowledge of Big Data.


Get Started


¿Está preparado para empezar?

Descargue sandbox

¿Cómo podemos ayudarle?

cerrarBotón de cerrar

IOT and Predictive Big Data Analytics
for Oil and Gas

nube Hortonworks is a leader. Read the Forrester Wave.

Download Report

A global industry in the palm of your hand

Assets everywhere. People everywhere. Logistics everywhere. The petroleum industry has a lot of moving parts, and pretty much every aspect of it is in constant flux. Like other industries, its infrastructure generates data of all kinds—sensor data from upstream, midstream, and downstream operations, geological and geophysical, drilling and completions data, geolocation, text files, video and more. Hortonworks enables provides IoT and predictive big data analytics for oil and gas, delivering the predictive analysis and data insights to optimize performance to keep this industry humming.

Maximizar el rendimiento, reducir el riesgo, acelerar la innovación

Universal changes in the availability of data are changing the petrochemicals business in ways similar to changes in telecom, retail and manufacturing. Advances in instrumentation, process automation, and collaboration multiply the available volume of new types of data like sensor, IoT, geolocation, weather and seismic data. These can be combined with “human-generated” data like market feeds, social media, email, text, and images for oil and gas big data analytics providing new insight.

Use Cases

Acelerar la innovación con Well Log Analytics (también conocido como LAS Analytics)

Large, complex datasets and rigid data models limit the pace of innovation for exploration and production, because they require petrophysicists and geoscientists to work with siloed, complex datasets that require a manual quality control (QC) process. LAS log analytics with HDP big data analytics for oil and gas allows scientists to ingest and query their disparate LAS data for use in predictive models. They can do this while leveraging existing statistical tools such as SAS or R to build new models and then rapidly iterate them with billions of measurements. Combining LAS data with production, lease, and treatment data can increase production and margins. Dynamic well logs normalize and merge 100s or 1000s of LAS files, providing a single view of well log curves, presented as new LAS files or images. With HDP, those consolidated logs also include much of the sensor data that used to be “out of normal range” because of anomalous readings from power spikes, calibration errors, and other exceptions. With HDP, an automated QC process can ingest all the data (good and bad) then scrub it to eliminate the anomalous readings and present a clear, single view of the data.

Definir los puntos de ajuste operacionales para cada pozo y recibir alertas sobre desviaciones

After identifying the ideal operating parameters (e.g. pump rates or fluid temperatures) that produce oil and gas at the highest margins, that information can go into a set point playbook. Maintaining the best set points for a well in real-time is a job for Apache Storm’s fault-tolerant, real-time oil and gas predictive analytics and alerts. Storm running in Hadoop can monitor variables like pump pressures, RPMs, flow rates, and temperatures, and then take corrective action if any of these set points deviate from pre-determined ranges. This data-rich framework helps the well operator save money and adjust operations as conditions change.

Optimizar el arrendamiento de ofertas con predicciones de rendimiento fiables

Las empresas de petróleo y petróleo pujan por contratos multianuales de derechos de explotación y perforación en tierras federales o privadas. El precio pagado por el contrato de arrendamiento es un coste anual conocido para acceder a un futuro impredecible de flujo de hidrocarburo. El arrendador del pozo puede superar a sus competidores reduciendo la incertidumbre en torno a ese beneficio futuro prediciendo con mayor precisión el rendimiento del pozo. Apache Hadoop puede proporcionar esa ventaja competitiva mediante el almacenamiento de los archivos de imagen, datos de los sensores y mediciones sísmicas. Esto se suma al concepto que falta para cualquier encuesta de terceros de las vías abiertas para hacer una oferta. La empresa que posee dicha información única con el análisis predictivo puede pasar ahora a un contrato de arrendamiento que de otro modo no podría haber perseguido, o puede encontrar diamantes en bruto y arrendar los que están en descuento.

Reparación preventiva de los equipos con mantenimiento dirigido

Traditionally, operators gathered data on the status of pumps and wells through physical inspections (often in remote locations). This meant that inspection data was sparse and difficult to access, particularly considering the high value of the equipment in question and the potential health and safety impacts of accidents. Now, oil and gas IoT sensor data can stream into Hadoop from pumps, wells and other equipment much more frequently—and at lower cost—than collecting the same data manually. This helps guide skilled workers to do what sensors cannot: repair or replace machines. The machine data can be enriched with other data streams on weather, seismic activity or social media sentiment, to paint a more complete picture of what’s happening in the field. Algorithms then parse that large, multifaceted data set in Hadoop to discover subtle patterns and compare expected with actual outcomes. Did a piece of equipment fail sooner than expected, and if so, what similar gear might be at risk of doing the same? Data-driven, preventative upkeep keeps equipment running with less risk of accident and lower maintenance costs.

Curvas de declive lento con optimización de parámetros de producción

Oil companies need to manage the decline in production from their existing wells, since new discoveries are harder and harder to come by. Decline Curve Analysis (DCA) uses past production from a well to estimate future output. However, historic data usually shows constant production rates, whereas a well’s decline towards the end of its life follows a non-linear pattern—it usually declines more quickly as it depletes. When it comes to a well near the end of its life, past is not prologue. Production parameter optimization is intelligent management of the parameters that maximize a well’s useful life, such as pressures, flow rates, and thermal characteristics of injected fluid mixtures. Machine learning algorithms can analyze massive volumes of sensor data from multiple wells to determine the best combination of these controllable parameters. HDP’s powerful capabilities for data discovery and subsequent big data analytics for oil and gas analysis can help the well’s owner or lessee make the most of that resource.